If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+19y+45=0
a = 2; b = 19; c = +45;
Δ = b2-4ac
Δ = 192-4·2·45
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*2}=\frac{-18}{4} =-4+1/2 $
| 7x=-3=46 | | 2b-1=3b÷5 | | 50(2x)(3x-10)=180 | | +3y=20;5y=-4 | | -8=4n | | 7^(-x-4)=4^(4x) | | 8+7x=–13 | | 4n+6+8n+5+7n=n | | x+x+2/x+4/x+3=300 | | 1200=y+(y/2) | | 1200=x+(x/2) | | (0.23)x=32√ | | 5-(3y-6y-8)-7y=2y+16-9 | | 9-3x+2(3-x)=-5(x+4)-x | | 9-3x+2(2-×)=-5(x+4)-x | | |6z-3|=5 | | 1*7(7t-6)=t+6*14 | | 8x-4=10x-7 | | x²+6x+20=0 | | 19=w/13+8 | | x^2+22x+33=-2 | | -3(5x+3)+6x=-81 | | 3(5x+3)+6x=-81 | | 4x+25-12=32+17 | | 5v-7=53 | | 90-x=180-x÷3 | | 5v+7=53 | | 3x-5=2x+23 | | 5x-4=7x+7 | | 7b+8=1/3(10b×3-30) | | 2x=3x-9x | | 9u^2+36u+39=0 |